New Jersey Semi-Conductor Products, Inc.

20 STERN AVE.

SPRINGFIELD, NEW JERSEY 07081

U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

N-Channel JFETs

J/SST/U308 Series

J308 SST308 U309 J309 SST309 U310 J310 SST310

PRODUCT SUMMARY									
Part Number	V _{GS(off)} (V)	V _{(BR)GSS} Min (V)	g _{fs} Min (mS)	I _{DSS} Min (mA) 12 12					
J308	−1 to −6.5	-25	8						
J309	-1 to -4	-25	10						
J 310	−2 to −6.5	-25	8	24					
SST308	−1 to −6.5	-25	8	12					
SST309	−1 to −4	-25	10	12					
SST310	−2 to − 6.5	-25	. 8	24					
U309	−1 to −4	-25	10	12					
U310	−2.5 to −6	-25	10	24					

FEATURES

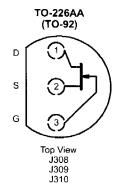
- Excellent High Frequency Gain: Gps 11.5 dB @ 450 MHz
- Very Low Noise: 2.7 dB @ 450 MHz
- Very Low Distortion
- High ac/dc Switch Off-Isolation

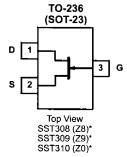
BENEFITS

- · Wideband High Gain
- Very High System Sensitivity
- High Quality of Amplification
- High-Speed Switching Capability
- High Low-Level Signal Amplification

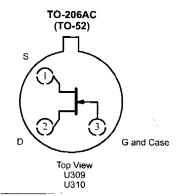
APPLICATIONS

- High-Frequency Amplifier/Mixer
- Oscillator
- Sample-and-Hold
- Very Low Capacitance Switches


DESCRIPTION


The J/SST/U308 series offers superb amplification characteristics. Of special interest is its high-frequency performance. Even at 450 MHz, this series offers high power gain at low noise.

Low-cost J series TO-226AA (TO-92) packaging supports automated assembly with tape-and-reel options. The SST series TO-236 (SOT-23) package provides surface-mount capabilities


and is available with tape-and-reel options. The U series hermetically-sealed TO-206AC (TO-52) package supports full military processing. (See Military and Packaging Information for further details.)

For similar dual products packaged in the TO-78, see the U430/431 data sheet.

*Marking Code for TO-236

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Vo	ltage	−25 V
Gate Current :	(J/SST Prefixes)	10 mA
	(U Prefix)	20 mA
Lead Temperature (1/16" from	n case for 10 sec.)	300°C
Storage Temperature :	(J/SST Prefixes)	150°C
	(U Prefix) -65 to	175°C

Operating Junction Temperature						
Power Dissipation :	(J/SST Prefixes) ^a					

Notes

a. Derate 2.8 mW/°C above 25°C b. Derate 4 mW/°C above 25°C

								Lin	nits			
						J/SST308		J/SST309		J/SST310		1
Parameter	Parameter Symbol Test Conditions		;	Тура	Min	Max	Min	Max	Min	Max	Unit	
Static												
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = -1 μA	V _{DS} = 0 \	/	-35	-25		-25		-25		٧
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 10 V	′, I _D = 1 nA			-1	-6.5	-1	-4	-2	-6.5	٧
Saturation Drain Current ^b	IDSS	V _{DS} = 10 V,	V _{GS} = 0 \	7		12	60	12	30	24	60	mA
Gate Reverse Current	I _{GSS}	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$ $T_A = 125^{\circ}\text{C}$		-0.002 -0.001		-1 -1		-1 -1		-1 -1	nA uA	
Gate Operating Current	I _G	V _{DG} = 9 V, I _D = 10 mA			-15	1					 	pΑ
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 \text{ V, } I_{D} = 1 \text{ mA}$			35	 		-			\vdash	Ω
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 10 mA V _{DS} = 0 V		J	0.7		1		1		1	
Dynamic									•			_
Common-Source Forward Transconductance	9fs	$V_{DS} = 10 \text{ V, } I_{D} = 10 \text{ mA}$ f = 1 kHz		ıA	14	8		10		8		mS
Common-Source Output Conductance	gos				110		250		250		250	μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 10 '	<u>-</u> ∨	SST	4	-	5		5		5	-
Common-Source		V _{DS} = 10 \ V _{GS} = -10 f = 1 MHz	V	J	1.9		2.5	 	2.5	 	2.5	- pF
Reverse Transfer Capacitance	C _{rss}	7 - 7 141112	_	SST	1.9	†	1			1	1	1
Equivalent Input Noise Voltage	ē _n	$V_{DS} = 10 \text{ V, } I_{D} = 10 \text{ mA}$ f = 100 Hz			6							nV∕ √Hz
High Frequency												
Common-Gate Forward Transconductance	9 _{fg}			5 MHz	14							Ī.
Common-Gate		V _{DS} = 10 V	f = 450 MHz f = 105 MHz		0.16	 		+	+		+	mS
Output Conductance	9 _{og}		f = 45	0 MHz	0.55							
Common-Gate Power Gain ^c	G _{pg}	I _D = 10 mA f =		5 MHz 0 MHz	16 11.5						+	-
· · · · · · · · · · · · · · · · · · ·		┥ ┡		5 MHz	1.5	+	+	 	 	1	+-	dB dB
Noise Figure	se Figure NF		f = 45	0 MHz	2.7	+-	+	1	 	1	+	1

Notes
a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
b. Pulse test: PW ≤ 300 µs duty cycle ≤ 3%.
c. Gain (G_{pg}) measured at optimum input noise match.

						Lin	nits		
					U309		U310		1
Parameter	Symbol	Test Co	Тура	Min	Max	Min	Max	Unit	
Static									
Gate-Source Breakdown Voltage	V _{(BR)GSS}	I _G = -1 μA	, V _{DS} = 0 V	-35	-25		-25		V
Gate-Source Cutoff Voltage	V _{GS(off)}	V _{DS} = 10 \	/, I _D = 1 nA	,	-1	-4	-2.5	-6	٧
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 10 V	r, V _{GS} = 0 V		12	30	24	60	mA
0.11. 0		$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$		-0.002		-0.15		-0.15	nA
Gate Reverse Current	l _{GSS}		T _A = 125°C	-0.001		-0.15		0.15	μA
Gate Operating Current	I _G	V _{DG} = 9 V, I _D = 10 mA		-15					pΑ
Drain-Source On-Resistance	「DS(on)	V _{GS} = 0 V ₂	35					Ω	
Gate-Source Forward Voltage	V _{GS(F)}	I _G = 10 mA	0.7		1		1	٧	
Dynamic									
Common-Source Forward Transconductance	9fs	V _{DS} = 10 V	', I _D = 10 mA kHz	14	10		10		mS
Common-Source Output Conductance	9os	f = 1	kHz	110		250		250	μS
Common-Source Input Capacitance	C _{iss}	V _{DS} = 10 V,	4		5		5	DF	
Common-Source Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 10 \text{ V, } V_{GS} = -10 \text{ V}$ f = 1 MHz		1.9		2.5		2.5	
Equivalent Input Noise Voltage	e _n	V _{DS} = 10 V f = 1	[/] , I _D = 10 mA 00 Hz	6					nV∕ √Hz
High Frequency									
Common-Gate			f = 105 MHz	14					
Forward Transconductance	9fg		f = 450 MHz	13					mS
Common-Gate Output Conductance	Gog		f = 105 MHz	0.16] ""3
		V _{DS} = 10 V	f = 450 MHz	0.55					
Common-Gate Power Gain ^c	oin [©]	$I_D = 10 \text{ mA}$	f = 105 MHz	16	14		14		
Common-Gate Fower Gain-	G _{pg}		f = 450 MHz	11.5	10		10		dB
Noise Figure	NF		f = 105 MHz	1.5		2		2]
Noise Figure	NF		f = 450 MHz	2.7		3.5		3.5]

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: $PW \le 300~\mu s$ duty cycle $\le 3\%$. c. Gain (G_{pg}) measured at optimum input noise match.